
Autism is a complex neurodevelopmental disorder with 
extraordinarily high heritability. Concordance between 
monozygotic twins reaches 90% for autism spectrum 
disorders (ASDs), as compared with less than 10% 
for dizygotic twins and siblings, and approximately 
0.6–1.0% occurrence in the general population, along 
with a 4:1 male:female ratio1–5. The number of reported 
cases of autism has risen rapidly over the past decade, 
largely due to better diagnostic instruments and public  
awareness, although environmental causes and  
gene–environment interactions are also under inves-
tigation6,7. Considerable efforts are now focused 
on understanding the genetic causes of autism (see 
‘Further Information’) and using the genetic findings 
to select rational targets for effective treatments. Large 
international consortia are conducting linkage analyses  
to identify chromosomal loci and association and 
whole-genome scans to discover candidate genes. Rare 
variants in candidate genes have been reported, both 
de novo and familial, as well as copy number variants 
and epigenetic factors8–10. Strong evidence indicates 
that functionally interrelated mechanisms underlie 
the disorder. Synaptic development genes implicated 
in autism include neurexins, neuroligins, shanks, ree-
lin, integrins, cadherins and contactins. However, each 
candidate gene mutation occurs in only a few individuals 
with autism1,3,9–17. Signalling, transcription, methylation 
and neurotrophic genes implicated in ASDs include 
phosphatase and tensin homologue (PTEN), MET, 

engrailed 2 (EN2), methyl-CpG-binding protein 2  
(MECP2), fragile X mental retardation 1 (FMR1), 
tuberous sclerosis 2 (TSC2), calcium channel, voltage-
dependent, L type, alpha 1C (CACNA1C), ubiquitin 
ligase E3A (UBE3A), Ca2+-dependent activator pro-
tein for secretion 2 (CADPS2) and brain-derived neu-
rotrophic factor (BDNF)1,10,18–25. Neurotransmission 
genes, including the serotonin transporter, oxytocin 
and vasopressin receptors and GABA (γ-aminobutyric 
acid) receptor subunit β3, have been repeatedly asso-
ciated with autism or highly implicated in social and 
affiliative behaviours impaired in autism1,26,27. Copy 
number variants include chromosomal duplications 
at 15q11–13 and 17p11.2 and deletions at 16p11.2 and 
22q13.3 (Refs 8,10,15,28–32).

One compelling approach to test hypotheses about 
the many candidate genes for autism is to generate anal-
ogous mutations in the mouse genome and evaluate the 
mutant line for phenotypes analogous to the symptoms 
of autism33–35. Effective animal models should incor-
porate face validity (strong analogies to the endophe-
notypes of the human syndrome), construct validity 
(the same biological dysfunction that causes the human 
disease, such as a gene mutation or anatomical abnor-
mality) and predictive validity (analogous response to 
treatments that prevent or reverse symptoms in the 
human disease)36,37. Mouse models have been gener-
ated with chromosomal deletions and with knockout 
and humanized knock-in mutations in many of the 
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Abstract | Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology 
that affects 1 in 100–150 individuals. Diagnosis is based on three categories of behavioural 
criteria: abnormal social interactions, communication deficits and repetitive behaviours. 
Strong evidence for a genetic basis has prompted the development of mouse models with 
targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are 
behavioural, phenotyping these mouse models requires behavioural assays with high 
relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are 
generating a comprehensive set of assays for social interaction, communication and 
repetitive behaviours to test hypotheses about the causes of austism. Robust phenotypes in 
mouse models hold great promise as translational tools for discovering effective treatments 
for components of autism spectrum disorders.
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candidate genes detected in subsets of individuals with 
ASDs1,25,29,38–68. Mouse models with construct valid-
ity are being used to evaluate hypotheses about both 
genetic and environmental causes of autism, including 
single gene polymorphisms, copy number variants, epi-
genetic modifications, environmental toxins, prenatal 
infections, immune dysfunctions and mitochondrial 
abnormalities22,63,69–77. Hypotheses about multiple risk 
genes and gene–environment interactions are tested 
in mouse models that incorporate construct validity 
for two or more hypothesized causes, using the same 
behavioural assays as read-outs. Naturally occurring 
phenotypic differences among inbred mouse strains 
have been successfully utilized to identify model sys-
tems with high face validity and cost efficiency78–91. 
Phenotypes with strong face validity provide ideal 
translational tools for evidence-based treatment  
discovery22,63,73–77,88,92. TABLe 1 presents examples of 
genetic mouse models displaying behavioural pheno-
types that are relevant to the three diagnostic criteria for  
autism25,29,38–41,43–68,78–87,89–91.

How do we model the symptoms of autism in mice? 
Designing mouse behavioural tasks that are relevant 
to human mental disorders presents a daunting chal-
lenge. Symptoms may be uniquely human and are often 
inherently variable. Autism diagnosis is currently based 
on purely behavioural criteria, as no consistent biologi-
cal markers have yet been identified2,93–98. until now, 
DSM-IV99, the diagnostic manual of the American 
Psychiatric Association, and ICD-10100, the diagnos-
tic manual of the World Health Organization, have 
required the presence of core elements in three specific 
categories: abnormal reciprocal social interactions, 
which include reduced interest in peers and difficulty 
maintaining social interaction, and failure to use eye 
gaze and facial expressions to communicate efficiently; 
impaired communication, which generally presents as 
language delays, deficits in language comprehension 
and response to voices, stereotyped or literal use of 
words and phrases, poor pragmatics (knowing how 
and when to use language) and lack of prosody, result-
ing in monotone or exaggerated speech patterns; and 
repetitive behaviours, which include motor stereotyp-
ies, repetitive use of objects, compulsions and rituals, 
insistence on sameness, upset to change and unusual 
or very narrow restricted interests. Proposed DSM-V 
revisions may merge the first two criteria into a more 
general social-communication factor that includes 
lack of social reciprocity and deficits in nonverbal and  
verbal communication, beginning in early childhood.

Based on extensive advice generously contributed 
by autism clinical experts, behavioural neuroscientists 
are engaged in generating new mouse behavioural 
tasks and in refining existing paradigms from the 
behavioural neuroscience literature that maximize face 
validity to each of the core symptoms. Here, we review 
the tests that have proven most useful, along with the 
essential control measures, for the triad of diagnostic 
features of autism. Neuroanatomical, biochemical, 
electrophysiological and genetic similarities between 

mice and humans support the use of mouse models to 
further our understanding of biological mechanisms 
underlying the behavioural manifestations of autism. 
Similar responses to pharmacological treatments in 
mice and humans encourage the use of well-validated 
mouse models in the discovery of effective therapeutics 
for ASD.

Assays for social interaction abnormalities in mice
Mus musculus is a social species that engages in high lev-
els of reciprocal social interactions, communal nesting,  
sexual and parenting behaviours, territorial scent mark-
ing and aggressive behaviours101–105. A variety of social 
assays have been described in the behavioural neuro-
science literature34,37. The examples described below 
were designed to maximize relevance to the types of 
social deficits that are specific to autism.

Reciprocal social interactions. Fine-grained measures 
of interactions between pairs or groups of juvenile 
or adult mice placed together in standard cages or 
specialized arenas provide the most detailed insights 
into reciprocal social interactions. Parameters rou-
tinely evaluated include nose-to-nose sniffing, nose-
to-anogenital sniffing, following, pushing past each 
other with physical contact, crawling over and under 
each other with physical contact, chasing, mount-
ing and wrestling78,81,90,103,106. Parameters are scored 
from videotapes by investigators, using data sheets or 
event-recording software. Automated videotracking 
systems have also been used to score social interac-
tions between two mice41,107. The experimental design, 
including the specific parameters scored, session dura-
tion, time of day, prior social isolation, environmen-
tal enrichment and pair composition by age, sex and 
strain, is optimized to meet the goals of the experi-
ment. Repeated testing of the same mice is usually pos-
sible; this allows researchers to evaluate trajectories 
across the neurodevelopmental stages of pup, juvenile, 
young adult and older adult. fIG. 1 and Supplementary 
information S1 (movie) illustrate reciprocal social 
interactions in mice.

Social approach. Simpler, automated measures of 
direct social approach offer more standardized, higher-
throughput assays, although fewer details of reciprocal 
interactions are captured. We developed an automated 
three-chambered social approach task, which scores 
time spent in a side chamber with a novel mouse ver-
sus time spent in a side chamber with a non-social 
novel object, an inverted wire pencil cup44,81,90,108,109. 
Sociability is defined as the subject mice spending 
more time in the chamber containing the novel target 
mouse than in the chamber containing the inanimate 
novel object. The wire cup serves as the novel object on 
one side and as the container control for novel object 
plus novel mouse on the other side. With the target 
novel mouse contained, the social approach is initi-
ated by the subject mouse only. The widely spaced wire 
bars of the container permit olfactory, visual, auditory 
and some tactile contact while preventing aggressive  

Nesting
Building nests in the home 
cage and sleeping together in a 
huddle in the home cage.

R E V I E W S

NATuRE REVIEWS | NeuroscieNce  VOLuME 11 | juLy 2010 | 491

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html


Table 1 | Examples of autism-relevant behaviours in genetic mouse models of autism spectrum disorders

Mouse model Genetic characteristics Behavioural phenotypes relevant to the symptoms of autism*

Nlgn4 Null mutation in the murine orthologue of the human 
NLGN4 gene43

• Reduced reciprocal social interactions43

• Low sociability43

• Lack of preference for social novelty43

• Reduced ultrasonic vocalizations43

Nlgn3 Homozygous mutation of humanized R451C mutation of 
the Nlgn3 gene44,45

• No genotype differences in reciprocal social interactions44,45

• No genotype differences in sociability44,45

• No genotype differences in preference for social novelty44

• Reduced ultrasonic vocalizations44

Null mutation in the murine orthologue of the human 
NLGN3 gene41

• No genotype differences in reciprocal social interactions41

• Reduced preference for social novelty41

Neurexin 1α Null mutation in the murine neurexin 1α generated by 
deleting the first exon of the gene46

• No genotype differences in reciprocal social interactions46

• No genotype differences in sociability46

• Impaired nest-building behaviour46

• Increased repetitive self-grooming46

Nlgn1 Null mutation in the murine orthologue of the human 
NLGN1 gene47

• No genotype differences in reciprocal social interactions47

• No genotype differences in sociability47

• No genotype differences in preference for social novelty47

• Impaired nest-building behaviour47

Pten Conditional null mutation, inactivated in neurons of 
the cortex and hippocampus, mouse orthologue of the 
human PTEN gene68

• Reduced reciprocal social interactions68

• Low sociability68

• Impaired nest-building behaviour68

• Impaired social recognition68

Pten haploinsufficent mutant line in which exon 5, and 
thus the core catalytic phosphatase domain, is deleted48

• Low sociability in females48

En2 Null mutation in the murine  orthologue of the human 
EN2 gene49,50

• Reduced reciprocal social interactions49

• Increased repetitive self-grooming49

• No genotype differences in sociability, confounded by low activity levels50

15q11–13 Duplication in the genomic region on the mouse 
chromosome 7 homologous to the human genomic 
region 15q11–13 (Ref. 29)

• Low sociability29

• Ultrasonic vocalizations elevated in pups and reduced in adults29

• Impaired reversal learning29

17p11.2 Duplication in the genomic region of murine 
chromosome 11 homologous to the human genomic 
region 17p11.2 (Ref. 51)

• Low sociability51

• No genotype differences in preference for social novelty51

• Impaired nest-building behaviour51

Gabrb3‡ Null mutation in the murine orthologue of the human 
GABRB3 gene52

• Low sociability‡ (Ref. 52)
• Lack of preference for social novelty‡ (Ref. 52)
• Repetitive stereotyped circling patterns‡ (Ref. 52)
• Impaired nest-building behaviour‡ (Ref. 52)

Slc6a4 Null mutation in the murine orthologue of the human 
serotonin transporter (SLC6A4) gene50

• Low sociability50

• Lack of preference for social novelty50

Haploinsufficient mutant line of the human serotonin 
transporter SLC6A gene48

• Impaired social recognition48

Oxt Null mutation in the murine Oxt gene generated by 
either a deletion in the first exon40,53,54 or by deletions in 
the last two exons40

• Impaired social recognition53

• Reduced pup ultrasonic vocalizations54

• No genotype differences in sociability40

• No genotype differences in preference for social novelty40

Avpr1b Null mutation of the murine vasopressin receptor 1b 
Avpr1b gene55,56

• Impaired social recognition55

• Reduced pup ultrasonic vocalizations56

Mecp2 Heterozygous mutation in methyl-CpG-binding  
protein 2 (Refs 39,57,58,59)

• Hindlimb clasping57,58

• Social avoidance39

• Impaired social recognition59

• Reduced social interest in an arena59

Fmr1 Null mutant mouse with a targeted mutation in the Fmr1 
gene in three genetic backgrounds: C57BL/6J38,50,60,61; 
hybrid of FVB/NJ x C57BL/6J62; and FVB/N-129/OlaHsd50

• Increased social approach60,61

• Reduced reciprocal social interactions38

• No genotype differences in sociability62

• No genotype differences in preference for social novelty62

• Low sociability dependent on genetic background50

• No genotype differences in preference for social novelty50

Tsc Heterozygous mutation that replaces the second exon in 
the Tsc2 gene63

• No genotype differences in sociability63

Heterozygous mutation generated by replacing exons 
6–8 in the Tsc1 gene65

• Reduced reciprocal social interactions65

• Impaired nest-building behaviour65
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and sexual interactions, thus ensuring a pure measure 
of simple interest in approaching and remaining in 
physical proximity to another.

Our photocell-equipped apparatus uses infrared 
beams embedded in the partitions between compart-
ments40,44,81,83,90,91,109–111. As the subject mouse moves 
between the three compartments, beam-breaks are 
recorded by the software and converted to time the 
mouse spends in each compartment and number of 
entries into each compartment. To provide a corrobo-
rative and more specific measure of social investigation 
during the test session, an observer scores time spent 
sniffing the novel mouse and time spent sniffing the 
novel object from session videotapes or in real time. 
The number of entries between compartments pro-
vides an independent measure of general exploratory 
locomotion. Mice can be tested more than once in this 
task — for example, at different ages to follow devel-
opmental trajectories. Videotracking software systems 
have been successfully used with the three-chambered 
apparatus, as well as observer scoring from video-
tapes43,48,77,107. fIG. 2 and Supplementary information S2  
(movie) illustrate the automated social approach test 
in mice.

Partition test. Another simple test of sociability uses 
a standard cage divided in half by a perforated parti-
tion made of clear plastic61,112 or wire104,105. The subject 
mouse is able to see, hear and smell the target mouse 
through the holes in the plastic or wire divider, but 
physical interactions are blocked. Time spent at the 

partition represents the amount of interest in the 
social partner. Different social partners can be sequen-
tially placed in one compartment to evaluate social  
preference and social memory in the subject mouse.

Social preference tests. Partner preference tests are used to 
evaluate components of social affiliation, social recognition  
and social memory. The choice between partners is 
measured by the amount of time spent by the sub-
ject mouse with each partner. Preference for social 
novelty is defined as the subject mouse spend-
ing more time in a chamber or in physical contact 
with a novel mouse than with a familiar mouse. 
Partners with different characteristics — for exam-
ple, pair bonded mates, or familiar versus unfa-
miliar conspecifics — provide measures of social 
recognition. Partners can be present simultaneously44,81,82  
or sequentially with time delays between presentations, 
to evaluate recognition memory113–116. Equipment used 
for social preference tasks include the three-chambered 
apparatus shown in fIG. 2, the partition test apparatus 
in which the subject mouse initiates more approaches 
and spends more time close to the partition adjacent to 
a novel mouse than to the partition adjacent to a famil-
iar mouse56,84,87, a Y‑maze113 and freely moving subject 
mice spending time with tethered target mice in three 
cages connected by tunnels116,117. Behavioural param-
eters during test sessions are scored from videotapes 
by investigators who are blind to the genotype or treat-
ment condition, by software from photocell-equipped 
systems or by software from videotracking systems.

Mouse model Genetic characteristics Behavioural phenotypes relevant to the symptoms of autism*

Foxp2 Homozygous and heterozygous mutations in the mouse 
homologue of the FOXP2 gene64

Knock-in mice for the mouse homologue of FOXP2 (Ref. 67)

• Reduced pup ultrasonic vocalizations64,67

Fgf17 Null mutation in the murine Fgf17 gene generated by 
deletion of the sites that encode the signal peptide66

• Reduced reciprocal social interactions66

• Lack of preference for social novelty66

• Reduced pup ultrasonic vocalizations66

Cadps2 Null mutation in murine orthologue of the Cadps2 gene25 • Reduced reciprocal social interactions25

BTBR BTBR T + tf/J (BTBR strain) is a genetically homogenous 
inbred strain that displays behavioural traits with face 
validity to all three diagnostic symptoms of autism

• Reduced reciprocal social interactions78,81,90,91,111

• Low sociability81,83,88,90,91,111

• Increased repetitive self-grooming81,88,90,111

• Reduced social transmission of food preference81

• Ultrasonic vocalizations elevated in pups and reduced in adults87,89

• Unusual ultrasonic vocalization call categories in pups and adults87,135

BALB BALB/cJ and BALB/cByJ are genetically homogenous 
inbred strains that display relatively low social behaviour 
in various settings, reduced ultrasonic vocalizations and 
reduced empathy-like behaviour

• Low sociability79,83

• No genotype differences in preference for social novelty83

• Reduced reciprocal social interactions84

• Reduced ultrasonic vocalizations in adolescent same-sex social 
interaction84

• Reduced place-conditioned social reward85

• Reduced social learning during social distress‡ (Refs 80,145)

C58/J C58/J is a genetically homogenous inbred strain that 
displays low sociability, primarily in males, and high levels 
of two distinct repetitive behaviours that emerge early in 
development

• High level of repetitive motor stereotypies82,86

• Low sociability82,86

• Increased repetitive self-grooming86

*Behavioural tests are described in the main text. ‡Phenotypes of survivors. Avpr1b, arginine vasopressin receptor 1b; Cadps2, Ca2+-dependent activator protein for 
secretion 2; En2, engrailed 2; Fgf17, fibroblast growth factor 17; Fmr1, fragile X mental retardation syndrome 1; Foxp2, forkhead box protein 2; Gabrb3, 
gamma-aminobutyric acid A receptor, subunit beta 3; Mecp2, methyl-CpG-binding protein 2; Nlgn, neuroligin; Oxt, oxytocin; Pten, phosphatase and tensin 
homologue; Slc6a4, solute carrier 6 member 4; Tsc, tuberous sclerosis.

Table 1 (cont.) | Examples of autism-relevant behaviours in genetic mouse models of autism spectrum disorders

Social memory
Time‑delayed recognition of a 
familiar mouse.

Social affiliation
social affiliation behaviours in 
mice include parent–pup 
interactions, male–female pair 
bonding, mating and 
aggression.

Social recognition
social recognition is the ability 
to distinguish familiar from 
novel conspecifics. social 
recognition by a subject mouse 
is defined by reduced social 
approach or reduced time 
spent investigating a familiar 
partner and reinstatement of 
investigation when a novel 
partner is introduced.

Y-maze
A three‑armed runway in the 
shape of the letter Y, used to 
measure exploratory 
behaviours in rodents.
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Social transmission of food preference. Interaction with 
a cagemate who has eaten a novel flavoured food will 
confer familiarity with the flavour, resulting in the sub-
ject mouse eating more of the now-familiar food than 
of a completely new food118–121. Familiarity is acquired 
when the observer mouse sniffs the breath, face and 
whiskers of the demonstrator mouse. Because face 
sniffing and close physical contact appear to contribute 
to the communication of flavour information, this task 
measures the tendency of the observer mice to obtain 
meaningful information through social interactions with  
the demonstrator.

Assays for communication deficits in mice
How mice communicate is not yet well understood. 
Olfactory cues are of primary importance101,122. 
Vocalizations in the ultrasonic and sonic ranges, visual 
cues, gustatory and tactile modalities may also con-
tribute to communication of information and to social 
bonding123–128. Several behavioural tasks are in routine 
use to evaluate the olfactory and auditory cues emitted 
by mice and the responses to these cues by other mice.

Urinary pheromones. Mice deposit urinary steroidal 
pheromones that function as territorial scent marks 
and display high levels of interest in urinary scents from 
other mice. This is reflected in their tendency to explore 

the anogenital area of a novel mouse, investigate uri-
nary scent marks in a cage, sniff a cotton swab soaked 
in urine and choose volatile urinary odours delivered 
by an olfactometer in an operant chamber104,105,129,130. 
The number of scent marks and countermarkings in 
close proximity to urinary olfactory cues may measure 
social motivation and/or olfactory communication89. 
Quantification methods include observer scoring of the 
number and duration of sniffing bouts from session 
videos and olfactory discrimination in operant tasks.

Olfactory habituation/dishabituation to social odours. 
Mice tend to sniff a novel odour and then quickly 
habituate to its novelty40,120,131–134. Repeated presenta-
tion of a sequence of cotton swabs containing the same 
odour will result in the mouse spending less and less 
time sniffing the swab with each presentation (habitua-
tion), as measured by an investigator with a stopwatch. 
Subsequent introduction of a cotton swab saturated 
with a new odour will reinstate a high level of sniff-
ing (dishabituation). The social odours on the cotton 
swabs are obtained from urine collected from another 
mouse or from swipes across the bottom of a cage of 
novel mice40,132. These social odours elicit consider-
ably higher levels of sniffing than non-social odours, 
such as almond extract or banana flavouring132,134. 
The shapes of the habituation and dishabituation 

Figure 1 | reciprocal social interactions. a | The Noldus PhenoTyper 3000 apparatus containing two unfamiliar juvenile 
male C57BL/6J (B6) mice engaged in social interaction. b | Nose-to-nose sniffing between two unfamiliar juvenile male B6 
mice. A video camera records the 10-minute session. A human observer, uninformed of the treatment condition, scores 
parameters of social interaction and non-social exploration of the arena using Noldus Observer event-recording software. 
Social parameters scored include following (one mouse walks closely behind the other, keeping pace) and push–crawl 
(physical contact includes pushing the snout or head underneath the partner’s body, squeezing between the partner and 
the arena wall or floor, and crawling over or under the partner’s body). Non-social parameters include self-grooming (the 
mouse grooms its face and body regions in a normal sequential pattern) and arena exploration (walking around the arena, 
sniffing the walls, floor and bedding, and digging in the bedding). Detailed scoring methods are described in Refs 
44,81,90,91,111. c | Representative data for reciprocal social interactions in pairs of juvenile males of two high-sociability 
inbred strains of mice, B6 and FVB/Ant, and a low-sociability strain, BTBR T+tf/J (BTBR). BTBR mice exhibited lower levels of 
following and push–crawl and higher levels of self-grooming and arena exploration than B6 mice, as previously 
reported81,90,111. FVB/Ant exhibited high levels of following and push–crawl similar to B6, low self-grooming similar to B6, 
and arena exploration similar to BTBR. These data further support the interpretation of a specific social deficit and unusual 
repetitive behaviour in BTBR mice. n = 12 B6 mice, 16 FVB/Ant mice and 12 BTBR mice. *p < 0.05 compared with B6 mice.
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curves document the ability of mice to discriminate 
same and different non-social and social odours. The 
height of the peaks of the curves provide a measure of 
interest in the social and nonsocial odours. fIG. 3 and  
Supplementary information S3 (movie) illustrate  
olfactory habituation and dishabituation.

Ultrasonic vocalizations. Complex vocalizations in 
the ultrasonic range are emitted by mice in social 
situations, including pups separated from the dam 
and nest, juvenile interactions, resident females in a 
resident–intruder task and males responding to female 
urinary pheromones56,84,87,123–128. Sensitive ultrasonic 
microphones, headphones and advanced software for 
detailed analyses of sonograms have revealed discrete 
categories of calls in mice56,84,87,124,126,128. Supplementary 
information S4 (audio) provides examples of mouse 
vocalizations in a social setting.

However, the intentional communicative nature of 
mouse vocalizations remains to be determined. Further 
research will be needed to understand which social 
situations elicit calls and how consistent those calls 
are during each specific social situation. Developing 
assays that are sensitive enough to detect subtleties 
of abnormal vocalizations in mice will be a challenge. 
Communication deficits in autism include developmen-
tal delays in the comprehension and use of expressive lan-
guage, failure to respond to speech during early ages, the 
absence of rhythm and melodic prosody, literal use and 
interpretation of language, and the tendency to speak 
in monologues instead of interactively2,93,97,98. Although 
there is not a consistent vocalization endophenotype for 
autism during the first 2 years of life in humans (which 
would correspond to the pup stage in mice), ongoing 
studies are evaluating the relevance of juvenile and adult 
vocalizations in mouse models to the specific types of 
communication abnormalities in autism29,84,89,135.

Assays for repetitive behaviours
Stereotyped behaviours. Mice exhibit spontaneous motor 
stereotypies, including circling, jumping, backflips and 
self-grooming86,136–138. Scoring of stereotypies is conducted 
most reliably by an investigator observing video taped ses-
sions or in real time. The observer records each bout of the 
stereotyped behaviour during a defined sampling period, 
using a scoresheet or an event recorder.

Repetitive behaviours. Sequences of behaviours may 
appear as normal patterns but persist for unusually 
long periods of time. BTBR T+tf/j mice (referred to 
here as BTBR) engage in extremely long episodes of 
repetitive self‑grooming. BTBR mice may self-groom 
for up to 2 minutes, whereas bouts of self-grooming 
in standard control strains such as C57BL/6j(86) are 
much shorter, generally lasting between 5 and 10 sec-
onds81,90,91,111. Repetitive behaviours are generally scored 
— from videotapes or in real time — by an observer 
with a stopwatch. Marble burying, a repetitive dig-
ging behaviour, is scored by counting the remaining 
unburied marbles139. fIG. 4 and Supplementary infor-
mation S5 (movie) illustrate repetitive self-grooming 
in BTBR T+tf/j mice.

Insistence on sameness. Perseverative behaviours are 
relatively common in mice. Reversal learning tasks 
measure the flexibility of the mouse to switch from 
an established habit to a new habit. A spatial habit is  
first established, for example, reinforcing entries into 

Figure 2 | Automated three-chambered social approach. a | The test apparatus, a 
rectangular, three-chambered box made of clear polycarbonate44,81,82,83,90,91,109,111. 
Retractable doorways built into the two dividing walls control access to the side 
chambers. Entries into each chamber are automatically detected by photocells 
embedded in the doorways. The number of entries and time spent in each chamber 
are tallied by the software. The test session begins with a 10-minute habituation 
session in the centre chamber only, followed by a 10-minute habituation session with 
access to all 3 empty chambers. If an innate side preference for either the right or left 
chamber is detected during the habituation session, the testing environment is 
reorganized to equalize light levels, nearby objects, and so on. The subject is then 
briefly confined to the centre chamber while a novel object (an inverted stainless 
steel wire pencil cup) is placed in one of the side chambers. A novel mouse, previously 
habituated to the enclosure, is placed in an identical wire cup located in the other 
side chamber. A weighted plastic cup is placed on the top of each inverted wire cup to 
prevent the subject from climbing on top. The side chambers containing the novel 
object and the novel mouse are alternated between left and right across subjects. 
After the novel object and the novel mouse are positioned, the two side doors are 
simultaneously lifted and the subject is allowed access to all three chambers for 
10 minutes. In addition to the automatically tallied time spent in each chamber and 
entries into each chamber, an observer with stopwatches scores the time spent 
sniffing the novel object and the novel mouse, in real time or from videotapes. The 
investigator scoring time spent sniffing is blind to the identity of the subject mice.  
b | Adult male C57BL/6J (B6) and FVB/Ant mice displayed sociability, defined as 
spending more time in the chamber containing the novel mouse than in the chamber 
containing the novel object, and more time sniffing the novel mouse than sniffing the 
novel object. Adult male BTBR T+tf/J (BTBR) mice did not display sociability, spending 
similar amounts of time in the chamber containing the novel mouse and in the 
chamber containing the novel object, and similar amounts of time sniffing the novel 
mouse and sniffing the novel object, as previously reported in Refs 81,83,90,91,111. 
n = 12 B6 mice, 16 FVB/Ant mice and 12 BTBR mice. *p < 0.01 for the comparison 
between novel mouse and novel object. 

Repetitive self-grooming
Unusually long duration of the 
normal pattern of grooming of 
the entire body.
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the left arm of a T‑maze or by locating the hidden escape 
platform in one quadrant of a Morris water maze. The 
re inforcer is then moved to a new location — for exam-
ple, the food reward is moved to the right arm of the 
T-maze or the hidden platform is moved to a different 
quadrant of the water maze pool44,82,140–142. A mouse model 
of autism is predicted to perform well on the initial acqui-
sition but to fail on reversal owing to either increased per-
severation or specific impairments in reversal learning. It 
may also be possible to model ‘upset to change’ in mice. 
Olfactory disruptors introduced during a selective atten-
tion operant task produced a generalized disruption in 
performance143, illustrating an interesting response that 
could reflect an upset to a change.

Restricted interests. Methods to measure restricted 
interests in rodents are under development. One 
approach capitalizes on the tendency of mice to 
explore all aspects of a novel environment, including 
exploratory locomotion in a novel open field, sniff-
ing of novel objects and nose poking into holes in the 
wall or floor144. Perseverative exploration of only one 
of the available objects or holes, rather than the nor-
mal strategy of exploring all novel objects or holes, may 
be analogous to restricted interests in human subjects  
with autism.

Assays to be developed
Designing mouse behavioural assays with high relevance 
to the diagnostic symptoms of autism presents a sub-
stantial challenge for capturing reasonable face valid-
ity. Several symptoms of autism, such as the literal use of 
language and difficulties in interpreting irony or sarcasm, 
are unlikely to be successfully modelled in mice.

‘Theory of mind’, the ability of one person to intuit 
what another person is feeling and thinking, may not 
be innate to the mouse repertoire. However, two recent 
reports support the possibility that mice display ele-
ments of empathy. Subject mice show greater responsive-
ness to a painful experience after observing cagemates 
who have experienced a painful stimulus80,145. Subtleties 
of language are also unlikely to be innate to mice. 
However, the complexity of mouse ultrasonic vocaliza-
tion patterns may contain considerable communicative  
information135. Quantitative measures of the reward 
value of social interactions are not yet in place for mice 
or for autistic individuals. A starting point for measur-
ing the reward value of social interactions in mice may  
be the literature on rat operant chambers that measure 
the number of lever presses for parental access to pups146, 
rat operant chambers that measure the number of lever 
presses for adult access to sexual partners147 and a mouse 
conditioned place preference task for social odours84,85. 

Figure 3 | olfactory habituation/dishabituation. a | The testing environment, an empty, clean mouse cage containing a 
thin layer of clean bedding and a hole for inserting a cotton-tipped swab40,120,131,132,134. b | Representative data from a line of 
oxytocin (Oxt, also known as OT)-knockout mice, comparing null mutants, heterozygotes and wild-type littermate 
controls. The first presentation of a water-saturated cotton swab elicited moderate sniffing that decreased across the 
second and third presentations of water swabs (habituation). The next presentations of three swabs saturated with 
almond extract (1:100 dilution) elicited significantly more sniffing (dishabituation), which decreased across the second 
and third presentations of the almond odour (habituation). The next presentations of three swabs saturated with imitation 
banana flavouring (1:100 dilution) elicited more sniffing (dishabituation) that decreased across the second and  
third banana presentations (habituation). The next presentations of three swabs swiped across the bottom of a cage 
containing soiled bedding from mice which had no previous contact with the subject (cage 1) elicited high levels of sniffing 
(dishabituation), which decreased across the second and third presentations of swipes from social cage 1 (habituation). The 
next presentations of three swabs swiped across the bottom of a different cage containing soiled bedding from mice that 
had no previous contact with the subject (cage 2) elicited high levels of sniffing (dishabituation), which decreased across the 
second and third presentations of swipes from social cage 2 (habituation). The shapes of the habituation and dishabituation 
curves confirm that the mice have the sensory abilities to detect and discriminate non-social and social odours. The heights 
of the peaks indicate interest in non-social and social odours. Time spent sniffing the social odours is generally higher than 
the number of sniffs of non-social odours. n = 7 male and 10 female Oxt+/+ mice, 14 male and 15 female Oxt+/− mice, 6 male 
and 9 female Oxt–/− mice. Part b is reproduced, with permission, from Ref. 40 © (2007) Elsevier.

T-maze
A device used to examine 
spatial position habit. subject 
mice are trained on an 
appetitive task with a spatially 
contingent reinforcer. failure of 
the subject to switch from a 
previously learned location to a 
new location represents 
resistance to change in routine.

Morris water maze
A device used to test spatial 
learning. subject mice navigate 
a pool of water and utilize 
distal spatial cues to locate a 
hidden escape platform. 
failure of the subject to switch 
from a previously learned 
location to a new location 
models resistance to change in 
routine.
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Executive functions requiring the simultaneous inte-
gration of large amounts of complex social and non-
social information may be localized in the prefrontal 
cortex, a brain region that is not well-developed in mice. 
Complex cognitive abilities are evaluated in mice using 
cognitive tests that depend on medial frontal cortex 
connections, such as the intradimensional and extra-
dimensional attentional set‑shift task148,149. Eye gaze is dif-
ficult to track in mice, as the pupil is hard to distinguish. 
However, elements of eye gaze, joint attention and atten-
tional focus might be modelled in mice using sustained 
attention tasks, such as the five‑choice serial reaction time 
test150 with auditory, visual or olfactory distracters151. 
Some features of autism, such as the 4:1 male:female 
ratio and regression of social communication after one 
year of age, have yet to be identified in a mouse model.

Associated symptoms. Associated symptoms, which 
occur in subsets of autistic individuals, include  
seizures, anxiety, mental retardation, hyperreactivity 
and hyporeactivity to sensory stimuli, sleep disruption 

and gastrointestinal distress152–154. Analogous pheno-
types would be useful additions to a mouse model that 
displays robust social deficits. Standardized mouse 
assays are available to measure seizures (observer scor-
ing, electroencephalography (EEG) recordings), anx-
iety-related behaviours (elevated plus‑maze, light–dark 
exploration), cognitive abilities (spatial learning (Morris 
water maze), contextual and cued fear conditioned emo-
tional learning, shock avoidance, object recognition and 
operant discrimination tasks, among others), hyper-
sensitivity to sensory stimuli (acoustic startle, air puff 
startle, hot plate) and sleep (EEG recordings, circadian 
running wheels, home cage monitoring systems)37,155. 
Standard assays of mouse developmental milestones 
from birth through weaning are useful for identifying 
phenotypes that are relevant to associated symptoms of 
autism during early development37,44,56,87,98,156.

A fundamental issue resides in potential artefacts 
caused by mouse phenotypes which are relevant to an 
associated symptom of autism, but which confound 
the interpretation of a mouse phenotype with higher 
relevance to a specific core symptom of autism. For 
instance, mice with anxiety-like traits will engage in low 
exploratory activity, resulting in minimal entries into 
the side chambers in the three-chambered sociability 
task, thus rendering social approach data meaningless. 
Identifying phenotypes relevant to associated symptoms, 
versus artefacts that confound the interpretation of tests 
relevant to diagnostic symptoms, poses an internal  
paradox to be parsed on a case-by-case basis.

Methodological considerations
Control parameters. Severe physical disabilities will 
cause false positives in many of the behavioural tasks 
described above34–37,157–159. For example, olfactory  
deficits will inhibit performance on social approach, 
social recognition, olfactory discrimination and scent 
marking tests. Motor dysfunctions will prevent a 
mouse from active exploration of test environments 
that require locomotion, including social chambers, 
T-mazes and holeboards. To rule out artefacts, each new 
line of mutant mice has to be evaluated on a series of 
measures of general health, body weight, neurological  
reflexes, home cage behaviours, open-field activity, 
rotarod performance, visual forepaw placing, acoustic  
startle and pain sensitivity36,37. Given the funda-
mental role of olfaction in mouse social behaviours, 
social and non-social olfactory abilities are routinely  
evaluated with multiple tests, including latency to locate 
buried food, olfactory habituation/dishabituation  
to non-social and social odours, and preference for 
social novelty44,132.

Sample sizes and statistical analyses. The number of mice 
per group (n) for behavioural experiments is considerably 
larger than the number of mice needed for most biologi-
cal assays. Larger numbers of mice are usually necessary 
to compensate for the unavoidable variability in environ-
mental factors that influence mouse behaviours, such as 
handling by animal caretakers, vivarium conditions, early 
parental care and home cage dominance hierarchies. 

Figure 4 | repetitive self-grooming. a | The testing 
arena, a clean, empty mouse cage. Each mouse was given a 
10-minute habituation period in the empty cage, then 
scored for 10 minutes for cumulative time spent grooming 
all body regions81,90,111. b | Representative data in juvenile 
and adult male C57BL/6J (B6) mice and BTBR T+tf/J (BTBR) 
mice. High levels of repetitive self-directed grooming were 
evident in 18-, 28-, 38- and 60-day-old male BTBR mice 
compared with age-matched male B6 mice. n = 10 B6 mice 
and 10 BTBR mice. *p < 0.05. **p < 0.01. Part b is 
reproduced, with permission, from Ref. 81 © (2008) 
Blackwell Publishing.

Attentional set-shift task
An attentional task that 
requires the subject to 
simultaneously discriminate in 
two dimensions to obtain food 
reinforcement. for example, 
the food may be buried in sand 
versus gravel, and contained in 
a round bowl versus a square 
box. This task is dependent on 
intact frontal cortex functions 
and may be analogous to 
executive function tasks in 
humans.

Five-choice serial reaction 
time test
A rodent attentional task 
analogous to sustained 
attention tasks for humans. 
The mouse must monitor five 
spatial locations 
simultaneously and nose‑poke 
when the light above one is 
illuminated to obtain the food 
reinforcer. Accuracy and speed 
of response measure 
attentional performance. 
Distractors may be added to 
evaluate attentional shift.

Elevated plus-maze
A device used to examine the 
naturalistic conflict between 
the tendency of mice to 
explore a novel environment 
and the aversive properties of 
an open elevated runway. Mice 
generally prefer the two 
enclosed arms, but will explore 
the two open arms to some 
extent. The total number of 
entries into all arms serves as a 
control for general locomotion. 
for example, motor 
dysfunctions or sedative 
effects of a drug treatment will 
reduce total arm entries.
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n = 10–20 per genotype and per sex is often required 
to achieve sufficient statistical power when performing, 
for example, a Two-Way Repeated Measures Analysis 
of Variance (ANOVA). When a significant ANOVA is 
detected, a posthoc test, such as Newman–Keuls, Tukey’s, 
Sheffe or Bonferroni–Dunn, is used to compare group 
means for specific differences between genotypes and/or 
treatment effects. If breeding, housing or testing capac-
ity is limited, small subgroups can be generated to accu-
mulate the needed numbers, as long as each genotype is 
represented in each subgroup on each day of behavioural 
testing, and the data from wild-type littermate controls 
do not differ across subgroups.

Replicability. The strength of a phenotype increases 
when the initial findings are replicated in a second and 
third cohort of littermates of all genotypes. Phenotypic 
replications that are produced by different investiga-
tors in the same laboratory, by different investigators in 
different laboratories, from independent lines of mice 

with the same mutation generated by different labora-
tories using different DNA constructs, or by breeding 
into different genetic backgrounds, clearly strengthen 
the conclusiveness of phenotypes. Minor methological 
differences and the influence of environmental factors 
become trivial when findings are well replicated across 
these different contexts.

Translational applications
The entire set of behavioural tasks described above can 
usually be conducted in the same set of mice, as long as 
reasonable attention is paid to the sequence in which the 
tests are conducted. For example, the most stressful tasks 
should be performed at the end of the sequence, and with 
sufficient intervals between testing days159. Occasionally a 
task cannot be conducted owing to species issues, such as 
body size or activity levels, physical or procedural artefacts 
caused by background genes, unexpected consequences of 
the targeted gene mutation, or side effects of a treatment. 
Most of the behavioural assays can be successfully applied 

Table 2 | Examples of treatments that prevented or reversed phenotypes in mouse models of neurodevelopmental disorders

Treatment Mouse model Phenotypic improvement

mGluR antagonists, 
MPEP88,161,162, fenobam162

Fmr1–/– • Susceptibility to audiogenic seizures is prevented161

• Decreased open field hyperactivity161

• Rescued prepulse inhibition of startle deficit162

• Rescued abnormal spine morphology162

BTBR • Reduced repetitive behaviour88

mTOR inhibitors, 
rapamycin63,77,177,178, RAD001 
(Ref. 177)

Pten • Prevented and reversed macrocephaly, dendritic and axonal hypertrophy77

• Improved social interaction time77

• Increased open field centre time77

• Reduced duration and frequency of seizures77

Tsc1 null-neuron inactivated in 
neurons63,177

• Improved survival rates63,177

• Improved neuronal morphology, reduced enlarged neurons and restored 
myelination177

Tsc1GFAP inactivated in glia178 • Improved survival rates and weight gain178

• Prevented seizures and electroencephalography (EEG) abnormalities178

Tsc2+/– (Ref. 63) • Improved learning and memory on Morris water maze and fear 
conditioning63

Oxytocin114 OXT–/– • Rescued deficits in social recognition114

BDNF75 Fmr1–/– • Rescued long-term potentiation abnormality75

Ampakines, CX546 (Ref. 73) Mecp2–/– • Reversed respiratory deficits73

mGluR genetic reduction74 Fmr1–/– • Prevented susceptibility to audiogenic seizures74

• Rescued abnormal spine morphology74

• Rescue of exaggerated inhibitory avoidance learning74

FMR1 gene 
replacement60,61,76

Fmr1–/– • Normalized open field activity60

• Normalized light–dark anxiety-like behaviour60

• Rescued abnormal social responses61

• Rescued increased prepulse inhibition76

PAK genetic reduction92 Fmr1–/– • Normalized open field centre time92

• Rescued fear-conditioning deficit92

• Rescued long-term potentiation deficit92

MECP2 gene 
replacement174,176

Mecp2–/+ is an inducible heterozygous 
transgenic176

Mecp2/Stop is an Mecp2 mutant with 
Mecp2 conditional activation174

• Rescued open field deficits176

• Increased survival and lifespan174

• Normalized weights, breathing, gait and activity174

See TABLe 1 and main text for further details on mouse models. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived neurotrophic 
factor; Fmr1, fragile X mental retardation syndrome 1; Mecp2, methyl-CpG-binding protein 2; mGluR, metabotropic glutamate receptor; MPEP, 2-methyl-6- 
phenylethynyl-pyridine hydrochloride; mTOR, mammalian target of rapamycin; PAK, p21-activated kinase; Pten, phosphatase and tensin homologue;  
Tsc, tuberous sclerosis.
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to normal and mutant lines of mice and rats, inbred strains 
of mice and rats, and some other rodent species.

The field is now poised to pursue a comprehensive char-
acterization of behavioural traits that are relevant to the 
symptoms of autism in each of the candidate gene mutant  
lines of mice. Positive findings obtained from a mutant 
mouse model will reinforce interest in pursuing a gene 
in molecular and clinical studies. For example, a ration-
ale for developing metabotropic glutamate receptor 5  
(mGluR5) antagonists as therapeutics has been provided 
by studies showing that a genetic reduction of mGluR5 
reversed some of the symptoms in Fmr1 mouse models 
of fragile X syndrome, in addition to studies showing 
that an mGluR5 antagonist treatment reversed Fmr1 
phenotypes and repetitive self-grooming in BTBR 
mice74,88,160–162 (TABLe 2). Neuroanatomical, electrophysi-
ological, neurochemical and other phenotypic char-
acterizations can be used to test emerging hypotheses 
about the biological mechanisms responsible for the 
brain dysfunctions underlying neurodevelopmental  
disorders11,12,43,48,63,75,77,138,140,163. Identical phenotyping strat-
egies can be applied to investigate putative environmental 
causes for autism. Interesting behavioural abnormalities 
have emerged from rodent models of prenatal exposure to 
valproic acid164, prenatal influenza infection165, immune 
dysfunctions71 and exposure to neurotoxins70.

Treatments for the symptoms of autism are 
being intensively sought163,166. Early behavioural 

interventions, such as applied behaviour analysis, pivotal 
response training, parent training, behaviour manage-
ment and social skills training in groups (all of which 
are primarily provided through special educational 
programmes), are currently the only treatments that sig-
nificantly improve the first and second core symptoms  
(unusual reciprocal social interactions and communi-
cation deficits)156,167. Medications can have significant 
effects on associated symptoms such as hyperactivity 
or mood, but have not been shown to directly affect 
the core features of autism. Behavioural interventions 
have ameliorated symptoms in several mouse models of 
neurodevelopmental improved locomotion and rotarod 
performance in Rett syndrome Mecp2 mutant mice 
and reduced hyperactivity in fragile X syndrome Fmr1 
knockout mice168–171. social peer enrichment improved 
social interactions in low-sociability BTBR mice reared 
as juveniles with social B6 cagemates172. Preclinical 
successes have been reported for genetic rescues and 
pharmacological reversals of aberrant phenotypes in 
mouse models of ASD. Successful drug candidates 
include mGluR5 antagonists, rapamycin, BDNF and 
oxytocin63,73–77,88,92,114,160–162,173–178 (TABLe 2). As knowledge 
grows about the genetic and environmental factors that 
confer susceptibility for autism, mouse models with 
construct validity and phenotypes that are relevant to 
core symptoms will offer strong translational systems 
for discovering rational therapeutics.
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phenome/mpdcgi?rtn=docs/introducing
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Disorders Public Information: http://www.nimh.nih.gov/
health/topics/autism-spectrum-disorders-pervasive-
developmental-disorders/index.shtml
National Institutes of Health Autism Coordinating 
Committee: http://www.nimh.nih.gov/health/topics/ 
autism-spectrum-disorders-pervasive-developmental-
disorders/nih-initiatives/nih-autism-coordinating-committee.
shtml
Simons Foundation Autism Research Initiative: https://sfari.
org/web/sfari/home
Simons Foundation Simplex Collection (genetic resource): 
https://sfari.org/sfari-simplex-collection

SUPPLEMENTARY INFORMATION
See online article: S1 (movie) | S2 (movie) | S3 (movie) |  
S4 (audio) | S5 (movie)

All liNks Are AcTive iN The oNliNe Pdf

R E V I E W S

502 | juLy 2010 | VOLuME 11  www.nature.com/reviews/neuro

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene/627
http://www.ncbi.nlm.nih.gov/gene/775
http://www.ncbi.nlm.nih.gov/gene/2020
http://www.ncbi.nlm.nih.gov/gene/2332
http://www.ncbi.nlm.nih.gov/gene/4204
http://www.ncbi.nlm.nih.gov/gene/5728
http://www.ncbi.nlm.nih.gov/gene/7249
http://www.uniprot.org
http://www.uniprot.org/uniprot/P41594
http://www.autismspeaks.org/science/programs/agre/index.php
http://www.autismspeaks.org/science/programs/agre/index.php
http://www.autismspeaks.org
http://www.findmice.org//index.jsp
http://www.findmice.org//index.jsp
http://www.knockoutmouse.org/searchform
http://www.knockoutmouse.org/searchform
http://www.informatics.jax.org
http://aretha.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/introducing
http://aretha.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/introducing
http://ndar.nih.gov/ndarpublicweb
http://ndar.nih.gov/ndarpublicweb
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/index.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/index.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/index.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/nih-initiatives/nih-autism-coordinating-committee.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/nih-initiatives/nih-autism-coordinating-committee.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/nih-initiatives/nih-autism-coordinating-committee.shtml
http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-pervasive-developmental-disorders/nih-initiatives/nih-autism-coordinating-committee.shtml
https://sfari.org/web/sfari/home
https://sfari.org/web/sfari/home
https://sfari.org/sfari-simplex-collection
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851.html
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